Scientifically sound results with unmatched accuracy.
Our findings are highly repeatable, which indicates that the gut microbiome remains stable over time, unless significant disruptions occur, such as a change in diet or the addition of antibiotics.
GutID tests are powered by Intus Bio's patented assay and amplicon technology and proprietary AI analysis Titan-1™. Our tests rely on long-read sequencing which, unlike 16S or shotgun metagenomics, generates high-resolution data that provides truly actionable information.
Our DNA fingerprinting method allows you to observe any bacteria in your gut so that you can have the most accurate and reliable microbiome profile.
GutID Technology vs Others
Intus Bio's patented technology has been proven accurate in several research studies (see Publications) and has become the industry's leading microbiome testing company.
Stay tuned for our next microbiome tests on skin/wounds, vaginal and urine samples!
Universality
Specificity
Taxonomy Independence
Our patent on bacterial lysis solves the problem of obtaining accurate representation of the strains in a sample, so that it is possible to accurately compare the relative quantities of the bacterial strains.
The patented amplicon solves the problem of precise strain identification at scale, where there is sufficient genetic variability in the region for differentiation of strains, but at a sequencing scale that enables high-throughput analysis and rapid construction of a large database of reference samples from a diverse population. Proprietary analysis of the long amplicon data is facilitated by machine learning methods that allow precise statistical comparisons across our large population datasets, where each sample can be compare to the overall reference population to identify anomalous aspects of an individual’s microbial profile, for example, for potentially pathogenic bacterial signatures, as well as bacterial signatures associated with healthy populations.
The third problem is the need for database independence, because the number of unknown species and strains associated with human health and disease likely ranges into the millions and billions of strains, where only tens of thousands of bacteria have been sequenced.
The application of the unique, patented amplicon enables both identification and tracking of novel strains without relying on databases with far fewer than the millions of strains that would be required for traditional methods of ID and tracking.
Finding the right fit: evaluation of
short-read and long-read sequencing approaches to maximize the utility
of clinical microbiome data
MinION™ Nanopore Sequencing of Skin Microbiome 16S and 16S-23S rRNA Gene Amplicons
Read MoreHigh-resolution microbiome analysis reveals exclusionary Klebsiella species competition in preterm infants at risk for necrotizing enterocolitis
Read MoreHigh-Resolution Taxonomic Characterization Reveals Novel Human Microbial Strains with Potential as Risk Factors and Probiotics for Prediabetes and Type 2 Diabetes.
Read MoreGinseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour
effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy.
Improved DNA Extraction and Amplification Strategy for 16S rRNA Gene Amplicon-Based Microbiome Studies
Read MoreRajasekera, T. A., Galley, J. D., Mashburn-Warren, L., Lauber, C. L., Bailey, M. T., Worly, B. L., & Gur, T. L. (2024). Pregnancy
during the COVID-19 pandemic associated with differential gut microbiome composition as compared to pre-pandemic. Scientific Reports, 14(1), 26880. https://doi.org/10.1038/s41598-024-77560-x
Barko, P., Nguyen-Edquilang, J., Williams, D. A., & Gal, A. (2024). Fecal microbiome composition and diversity of cryopreserved canine stool at different duration and storage conditions. PLoS ONE. https://doi.org/10.1371/journal.pone.0294730
Rajasekera, T. A., Galley, J. D., Mackos, A. R., Chen, H. J., Mitchell, J. G., Kleinman, J. J., Cappelucci, P., Mashburn-Warren, L., Lauber, C. L., Bailey, M. T., Worly, B. L., & Gur, T. L. (2024). Stress and depression-associated shifts in gut microbiota: A pilot study of human pregnancy. Brain, Behavior, and Immunity - Health, 36, 100730. https://doi.org/10.1016/j.bbih.2024.100730
Bishop, R. C., Kemper, A. M., Clark, L. V., Wilkins, P. A., & McCoy, A. M. (2024). Stability of gastric fluid and fecal microbial
populations in healthy horses under pasture and stable conditions. Animals, 14(20), 2979. https://doi.org/10.3390/ani1420297
Galley, J. D., Mashburn-Warren, L., Blalock, L. C., Lauber, C. L., Carroll, J. E., Ross, K. M., Hobel, C., Coussons-Read, M., Dunkel Schetter, C., & Gur, T. L. (2023). Maternal anxiety, depression, and stress affect offspring gut microbiome diversity and bifidobacterial abundances. Brain, Behavior, and Immunity, 107, 253–264. https://doi.org/10.1016/j.bbi.2022.10.005
Bishop, R. C., Migliorisi, A., Holmes, J. R., Kemper, A. M., Band, M., Austin, S., Aldridge, B., & Wilkins, P. A. (2023). Microbial
populations vary between the upper and lower respiratory tract, but not within biogeographic regions of the lung of healthy horses. Equine Science Society Symposium. https://doi.org/10.1016/j.jevs.2024.105141
Gehrig, J. L., Portik, D. M., Driscoll, M. D., Jackson, E., Chakraborty, S., Gratalo, D., Ashby, M., & Valladares, R. (2022). Finding the right fit: Evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. *Microbial Genomics*. https://dx.doi.org/10.1099/mgen.0.000794
Graf, J., Ledala, N., Caimano, M. J., Jackson, E., Gratalo, D., Fasulo, D., Driscoll, M. D., & Matson, A. P. (2021). High-resolution differentiation of enteric bacteria in premature infant fecal microbiomes using a novel rRNA amplicon. *mBio*. https://dx.doi.org/10.1128/mbio.03656-20
Welham, Z., Li, J., Engel, A. F., & Molloy, M. P. (2023). Mucosal microbiome in patients with early bowel polyps: Inferences from short-read and long-read 16S rRNA sequencing. *Cancers*. https://dx.doi.org/10.3390/cancers15205045
Coleman, S., Unterhauser, K., Rezaul, K., Ledala, N., Lesmes, S., Caimano, M. J., Zhou, Y., Jackson, E., Gratalo, D., Driscoll, M. D., & Matson, A. P. (2023). High-resolution microbiome analysis reveals exclusionary Klebsiella species competition in preterm infants at risk for necrotizing enterocolitis. *Scientific Reports*. https://dx.doi.org/10.1038/s41598-023-34735-2
Hendricks, S. A., Vella, C. A., New, D. D., Aunjum, A., Antush, M., Geidl, R., Andrews, K. R., & Balemba, O. B. (2023). High-resolution taxonomic characterization reveals novel human microbial strains with potential as risk factors and probiotics for prediabetes and type 2 diabetes. *Microorganisms*. https://dx.doi.org/10.3390/microorganisms11030758
Spari, D., Zwicky, S. N., Yilmaz, B., Salm, L., Candinas, D., & Beldi, G. (2023). Intestinal dysbiosis as an intraoperative predictor of septic complications: evidence from human surgical cohorts and preclinical models of peritoneal sepsis. *Scientific Reports*. https://dx.doi.org/10.1038/s41598-023-49034-z
Xiao, L., Zhou, Y., Bokoliya, S., Lin, Q., & Hurley, M. (2022). Bone loss is ameliorated by fecal microbiota transplantation through SCFA/GPR41/ IGF1 pathway in sickle cell disease mice. *Scientific Reports*. https://dx.doi.org/10.1038/s41598-022-25244-9
Gorecka‐Mazur, A., Krygowska‐Wajs, A., Furgala, A., Li, J., Misselwitz, B., Pietraszko, W., Kwinta, B., & Yilmaz, B. (2024). Associations between gut microbiota characteristics and non‐motor symptoms following pharmacological and surgical treatments in Parkinson’s disease patients. *Neurogastroenterology & Motility*. https://dx.doi.org/10.1111/nmo.14846
Toh, K. Y., Toh, T. S., Chua, K. P., Rajakumar, P., Lee, J. W. J., & Chong, C. W. (2024). Identification of age-associated microbial changes via long-read 16S sequencing. *Gut Pathogens*. https://dx.doi.org/10.1186/s13099-024-00650-8
Hong, B.-Y., Driscoll, M., Gratalo, D., Jarvie, T., & Weinstock, G. M. (2024). Improved DNA extraction and amplification strategy for 16S rRNA gene amplicon-based microbiome studies. *International Journal of Molecular Sciences*. https://dx.doi.org/10.3390/ijms25052966
Togliatti, O. (2024). The role of maternal exercise in shaping the offspring gut microbiome. *Physiological Reports*. https://kb.osu.edu/handle/1811/104338
Spreckels, J. E., Fernández-Pato, A., Kruk, M., Kurilshikov, A., Garmaeva, S., Sinha, T., Ghosh, H., Harmsen, H., Fu, J., Gacesa, R., & Zhernakova, A. (2023). Analysis of microbial composition and sharing in low-biomass human milk samples: A comparison of DNA isolation and sequencing techniques. *ISME Communications*. https://dx.doi.org/10.1038/s43705-023-00325-6
Maltz-Matyschsyk, M., Melchiorre, C. K., Herbst, K. W., Hogan, A. H., Dibble, K., O’Sullivan, B., Graf, J., Jadhav, A., Lawrence, D. A., Lee, W. T., Carson, K. J., Radolf, J. D., Salazar, J. C., & Lynes, M. A. (2023). Development of a biomarker signature using grating-coupled fluorescence plasmonic microarray for diagnosis of MIS-C. *Frontiers in Bioengineering and Biotechnology*. https://dx.doi.org/10.3389/fbioe.2023.1066391
Rozas, M., Brillet, F., Callewaert, C., & Paetzold, B. (2022). MinIONTM nanopore sequencing of skin microbiome 16S and 16S-23S rRNA gene amplicons. *Frontiers in Cellular and Infection Microbiology*. https://dx.doi.org/10.3389/fcimb.2021.806476
Barko, P., Nguyen-Edquilang, J., Williams, D. A., & Gal, A. (2024). Fecal microbiome composition and diversity of cryopreserved canine stool at different duration and storage conditions. *PLOS ONE*. https://dx.doi.org/10.1371/journal.pone.0294730
Bishop, R. C., Migliorisi, A., Holmes, J. R., Kemper, A. M., Band, M., Austin, S., Aldridge, B., & Wilkins, P. A. (2024). Microbial populations vary between the upper and lower respiratory tract, but not within biogeographic regions of the lung of healthy horses. *Journal of Equine Veterinary Science*. https://dx.doi.org/10.1016/j.jevs.2024.105141
Bishop, R. C., Kemper, A. M., Clark, L. V., Wilkins, P. A., & McCoy, A. M. (2024). Stability of gastric fluid and fecal microbial populations in healthy horses under pasture and stable conditions. *Animals*. https://dx.doi.org/10.3390/ani14202979
Rieder, J., Kapopoulou, A., Bank, C., & Adrian-Kalchhauser, I. (2023). Metagenomics and metabarcoding experimental choices and their impact on microbial community characterization in freshwater recirculating aquaculture systems. *Environmental Microbiome*. https://dx.doi.org/10.1186/s40793-023-00459-z
Dong, M., & Feng, H. (2022). Microbial community analysis and food safety practice survey-based hazard identification and risk assessment for controlled environment hydroponic/aquaponic farming systems. *Frontiers in Microbiology*. https://dx.doi.org/10.3389/fmicb.2022.8792
Ansari, A., You, Y.-A., Lee, G., Kim, S. M., Park, S. W., Hur, Y. M., & Kim, Y. J. (2024). Dysbiotic vaginal microbiota induces preterm birth cascade via pathogenic molecules in the vagina. *Metabolites*. https://dx.doi.org/10.3390/metabo14010045
Galley, J. D., Mashburn-Warren, L., Blalock, L. C., Lauber, C. L., Carroll, J. E., Ross, K. M., Hobel, C., Coussons-Read, M., Schetter, C. D., & Gur, T. L. (2023). Maternal anxiety, depression, and stress affects offspring gut microbiome diversity and bifidobacterial abundances. *Brain, Behavior, and Immunity*. https://dx.doi.org/10.1016/j.bbi.2022.10.005
Rajasekera, T. A., Galley, J. D., Mackos, A. R., Chen, H. J., Mitchell, J. G., Kleinman, J. J., Cappelucci, P., Mashburn-Warren, L., Lauber, C. L., Bailey, M. T., Worly, B. L., & Gur, T. L. (2024). Stress and depression-associated shifts in gut microbiota: A pilot study of human pregnancy. *Brain, Behavior, & Immunity - Health*. https://dx.doi.org/10.1016/j.bbih.2024.100730
Souza, A. K., Zangirolamo, A. F., Droher, R. G., Bonato, F. G. C., Alfieri, A. A., Costa, M. C., & Seneda, M. M. (2023). Investigation of the vaginal microbiota of dairy cows through genetic sequencing of short (Illumina) and long (PacBio) reads and associations with gestational status. *PLOS ONE*. https://dx.doi.org/10.1371/journal.pone.0290026
Di Pietro, R., Arroyo, L. G., Leclere, M., & Costa, M. C. (2021). Species-level gut microbiota analysis after antibiotic-induced dysbiosis in horses. *Animals*. https://dx.doi.org/10.3390/ani11102859
Tran, T. D. B., Hernandez, C. M., Nguyen, H., Wright, S., Tarantino, L. M., Chesler, E. J., Weinstock, G. M., & Bubier, J. A. (2023). The microbial community dynamics of cocaine sensitization in two behaviorally divergent strains of collaborative cross mice. *Genes, Brain and Behavior*. https://dx.doi.org/10.1111/gbb.12845
Manohar, K., Hosfield, B. D., Mesfin, F. M., Colgate, C., Shelley, W. C., Liu, J., Zeng, L., Brokaw, J. P., & Markel, T. A. (2023). Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis. *Physiological Reports*. https://dx.doi.org/10.14814/phy2.15819
Hosfield, B. D., Drucker, N. A., Pecoraro, A. R., Shelley, W. C., Li, H., Baxter, N. T., Hawkins, T. B., & Markel, T. A. (2021). The assessment of microbiome changes and fecal volatile organic compounds during experimental necrotizing enterocolitis. *Journal of Pediatric Surgery*. https://dx.doi.org/10.1016/j.jpedsurg.2021.02.043
Susanti, D., Volland, A., Tawari, N., Baxter, N. T., Gangaiah, D., Plata, G., Nagireddy, A., Hawkins, T., & Kumar, A. (2021). Multi-omics characterization of host-derived Bacillus spp. probiotics for improved growth performance in poultry. *Frontiers in Microbiology*. https://dx.doi.org/10.3389/fmicb.2021.747845
Plata, G., Baxter, N. T., Susanti, D., Volland-Munson, A., Gangaiah, D., Nagireddy, A., Mane, S. P., Balakuntla, J., Hawkins, T. B., & Mahajan, A. K. (2022). Growth promotion and antibiotic induced metabolic shifts in the chicken gut microbiome. *Communications Biology*. https://dx.doi.org/10.1038/s42003-022-03239-6
Plata, G., Baxter, N. T., Hawkins, T. B., Huntimer, L., Nagireddy, A., Susanti, D., & Reinbold, J. B. (2022). Interactions between time on diet, antibiotic treatment, and liver abscess development on the fecal microbiome of beef cattle. *bioRxiv*. https://dx.doi.org/10.1101/2022.09.16.508319
Lindsey, R. L., Garcia-Toledo, L., Fasulo, D., Gladney, L. M., & Strockbine, N. (2017). Multiplex polymerase chain reaction for identification of *Escherichia coli*, *Escherichia albertii*, and *Escherichia fergusonii*. *Journal of Microbiological Methods*. https://dx.doi.org/10.1016/j.mimet.2017.06.005